
Binghamton

University

CS-220

Spring 2016

C Basics
Computer Systems, No relevant Sections

The C Programming Language (K&R), Chapter 4, Appendix A

Binghamton

University

CS-220

Spring 2016

Function in C

int cent_to_far(int t) {

return (t*9)/5+32;

}

http://www.pronk.com/samples/projects/021
$Function_Machine/Function_Machine.HTML

2

http://www.pronk.com/samples/projects/021$Function_Machine/Function_Machine.HTML

Binghamton

University

CS-220

Spring 2016

General C syntax

• Comments ignored
• Block comments start with “/*” and end with “*/” – don’t nest!

• Line comments start with “//” and end with end of line

• White space (blanks, tabs, newlines) is ignored
• only delimits tokens

• “int var;” is different from “intvar;”, but is the same as “int var ;” and is
also the same as “int

var
;”

Binghamton

University

CS-220

Spring 2016

C Statements

• A statement is a list of tokens that ends with a semi-colon
• a=a+3;

• int c=7;

• int cent_to_far(int c);

• A C statement may span more than one line in the file
• int MyLongFunctionNamedFunctionThatTakesLotsOfArguments(

int arg1, int arg2, int arg3, int arg4,
int arg5, int arg6, int arg7, int arg8);

• There may be more than one statement on one line in the file
• int a=5; a=a+6; int b; b=cent_to_far(a);

4

Binghamton

University

CS-220

Spring 2016

C Blocks

• A block of statements is a list of statements, surrounded by { and }
• { - Left curly brace

• } – Right curly brace

• A block can be used anywhere a statement can be used

• Blocks of statements can be nested
• { statement1; { statement2; statement3; } statement4; }

5

Binghamton

University

CS-220

Spring 2016

C File

• Boilerplate Pre-amble stuff
• Pre-processor directives (start with “#”)

• Global Variable declaration statements

• Function declaration statements

•Function definitions

Binghamton

University

CS-220

Spring 2016

C Function Definition Anatomy

int cent_to_far(int t) {

return (t*9)/5+32;

}

7

Name

Embodiment

Parameter(s)

Return Type

Binghamton

University

CS-220

Spring 2016

Identifiers

• Function, parameter, and variable names

• Must start with a letter or an underscore
• Underscores usually avoided

• May not contain white space

• After the first letter, can be any number, letter, or underscore

• Identifiers are case sensitive
• “polyArea” is different from “PolyArea”

• May not be a keyword

• Choose names that are descriptive, and easy to type
• “Be4aTgh9_fr37200aBy” is probably not a good choice

8

Binghamton

University

CS-220

Spring 2016

Keywords

asm auto break case char const continue
default do double else enum extern float for
fortran goto if int long register return short
signed sizeof static struct switch typedef
union unsigned void volatile while

9

Binghamton

University

CS-220

Spring 2016

Function Parameters

• Comma separated list of data passed in to the function

• Each entry in the list specifies the “type” and “name” of one
parameter

• The value of the parameter can be referenced by its name in the
function embodiment

• Terminology: Parameter from inside the function

• Argument when calling the function

10

Binghamton

University

CS-220

Spring 2016

Statements in a Function Embodiment

• Variable Declaration Statements

• Expressions statements <expression>;
• Assignment statements: <variable>=<expression>;

• Control Statements: if/then/else, do while, for, return, ….

Binghamton

University

CS-220

Spring 2016

Variable Declaration Statements

• <type> <name> [=<initial value>];

• Required for each variable in your program

• Tells the compiler
• The “type” of the variable, e.g. “int” or “float”

• The name of the variable

• Optionally, the initial value of the variable

• For example: int x=3;

• Basic Types: char, int, float

Binghamton

University

CS-220

Spring 2016

Variables in Functions

• Variable Declaration within function (usually at top)

• “Automatic” storage class by default

• New variable each time function starts

• Initialized when function starts (if initializer specified)

• No longer available when function ends

13

Binghamton

University

CS-220

Spring 2016

14

Built In Type

Number

Integer

char

signed
char

unsigned
char

short

signed
short

unsigned
short

int

signed
int

unsigned
int

long

signed
long

unsigned
long

Real

float double

Symbol

Char

char

Bit

char

void

Binghamton

University

CS-220

Spring 2016

Example Expression Statements

int x; int y; /* Variable Declarations */

x=13; /* Constant assignment */

y=x; /* Variable assignment */

y=-x; /* Unary Operator */

y=x*3; /* Binary Operator */

y=(x*3)+7; /* Parenthesis */

y=atoi(argv[2]); /* Function invocation */

x=y=7; / Assignment operator */

x*=3; /* Compound Assignment Operator */

Binghamton

University

CS-220

Spring 2016

16

E
xp

re
ss

io
n

Constant

Variable

Unary Operator
Prefix: +, -, ++, --, !, ~

Suffix: ++, --

Binary Operator

Arithmetic: +,-,*,/,%,

Logical: >,<,>=,<=,==, !=, &&, ||, ^^

Bit: &,|,^, <<, >>(expression)

Function Invocation

Assignment: =

Assignment Operator: +=, -=, *=, /=, %=, |=, &=, ^=

Ternary Operator: ?

Binghamton

University

CS-220

Spring 2016

C Operators with Side Effects

• y=++x; // Prefix increment

• y=x++; // Suffix Increment

• x=x+1; // increment first
y=x; // then assign

• y=x; // assign
x=x+1; // then increment

Binghamton

University

CS-220

Spring 2016

Assignment Operators

x <op>=y;

…is the same as…

x = x <op> y

• x+=3; x = x + 3;

• x|=0x02; x = x | 0x02;

• x/=y+3 x = x / (y+3) ;

Binghamton

University

CS-220

Spring 2016

Expression Statements / Equals Operator

• Assignment statements are really expression statements

• “Value” of an assignment is the value of the LHS

• x=y=z=0; // initialize x, y, and z to zero

• If a statement is just an expression, its value is discarded
printf(“This is a test\n”); // discards 15… number of chars printed

a=3; // discards 3… the value of “a”

(3+21)/6; // discards 4… the value of (3+21)/6

Binghamton

University

CS-220

Spring 2016

Why not more operators?

• Standard Library Functions
• stdlib.h

• Conversion – atoi, atol, atof, strtol, strtoul, strtod

• math – abs, labs, div, ldiv, rand

• math.h
• Trigonometry – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh

• Exponents – sqrt, pow, log, exp, log10, …

• Rounding – fabs, floor, ciel

• …

Binghamton

University

CS-220

Spring 2016

Operator Precedence
() [] -> .

! - ++ -- + - * & (type) sizeof

* / %

+ -

<< >>

< <= >= >

== !=

& ^ |

&& ||

?

= += -= *= /= %= &= ^= |= <<= >>=

,

Binghamton

University

CS-220

Spring 2016

C function invocation

• Arguments must match parameter types
• as specified in function signature

• For instance;

int y; y=area(‘r’,3,4) * 2; // two 3x4 rectangles

• Function must be declared before it can be invoked

• One way of declaring a function is to define the function.

• This leads to upside down code.

Binghamton

University

CS-220

Spring 2016

Example of Upside Down Code

int square(int x) { return x*x; }

int poly(int x) {

return square(x) + 2*x + 4;

}

int main() {

int x=7;

if (poly(x)<9) return 1;

return 0;

}

23

Binghamton

University

CS-220

Spring 2016

<

C function declaration

• <result type> <function name>(<arglist>) ;

• Optional –
• If not specified, function definition is used for the declaration

• Files much easier to read when top level function is at top of file

• C files typically contain:
<function declarations>

<top level function definition>

….

<bottom level function definition>

Function prototype

Binghamton

University

CS-220

Spring 2016

Example of RightSide Up Code
int poly(int x,int c1, int c2, int c3);

int square(int x);

int main() {
int x=7;

if (poly(x)<9) return 1;
return 0;

}

int poly(int x,int c1, int c2, int c3) {
return square(x) + 2*x + 4;

}
int square(int x) { return x*x; }

25

Binghamton

University

CS-220

Spring 2016

Top level function: “main”

• Operating system invokes your “main” function

• OS passes two arguments to “main”: int argc, char **argv
• argc – argument count – number of arguments passed to main

• argv – argument vector – list of strings – one for each blank delimited
token on the command line

• For instance after: ./mycmd p1 p2
• argc = 3

• argv[0] -> “/home/tbarten1/examples/xmp_args/mycmd”

• argv[1] -> “p1”

• Argv[2] -> “p2”

Binghamton

University

CS-220

Spring 2016

Return from main

• OS requires main to return an “int”

• Interpreted as the “return code” from your program
• Indicates if your program worked or failed.

• By Convention
• “0” – indicates that your program worked correctly

• Any thing else indicates a problem!

