Binghamton CS-220

University Spring 2016

C Basics

Computer Systems, No relevant Sections

The C Programming Language (K&R), Chapter 4, Appendix A

CS-220
Spring 2016

Binghamton
University

Function in C

L ncs,'i_;i-‘*:?7{3’."

1]

int cent_to_far(int t) {
return (t*9)/5+32;

bl

0

l///////////////// il

http://www.pronk.com/sample
$Function Machine/Function M

http://www.pronk.com/samples/projects/021$Function_Machine/Function_Machine.HTML

Binghamton CS-220

University Spring 2016

General C syntax

 Comments ignored
* Block comments start with “/*” and end with “*/” - don’t nest!
e Line comments start with “//” and end with end of line

* White space (blanks, tabs, newlines) is ignored
 only delimits tokens

* “int var;” is different from “intvar;”, but is the same as “int var ;” and is
also the same as “int

var

)

Binghamton CS-220

University Spring 2016

C Statements

e A statement is a list of tokens that ends with a semi-colon
e a=a+3;
* intc=7;
* int cent_to_far(int c);

* A C statement may span more than one line in the file
* int MyLongFunctionNamedFunctionThatTakesLotsOfArguments(
int argl, int arg2, int arg3, int arg4,
int arg5, int arg6, int arg7, int arg8);
* There may be more than one statement on one line in the file
* int a=5; a=a+6; int b; b=cent_to_far(a);

Binghamton CS-220

University Spring 2016

C Blocks

* A block of statements is a list of statements, surrounded by { and }
* { - Left curly brace
* } - Right curly brace

* A block can be used anywhere a statement can be used

e Blocks of statements can be nested
» { statement]; { statement2; statement3; } statement4; }

Binghamton CS-220

University Spring 2016

C File

* Boilerplate Pre-amble stuff
* Pre-processor directives (start with “#”)
* Global Variable declaration statements
* Function declaration statements

Function definitions

Binghamton CS-220

University Spring 2016

C Function Definition Anatomy

int.

Parameter(s)

Return Type Embodiment

Binghamton CS-220

University Spring 2016

|dentifiers

Jake| e
Eloalh é'-, OEgTou yAdam
m aceyFreya o
y g gﬁ%n%a Popp¥lsagella§£ :%%’
g JaydenJasmlneLola SEo=

c q,Benjamlnm
!j'y SlaylaLily

Mohamme 080 ol Thomas

Jack
w)
< |saac
@ TerE_I_I
<<
Q
scar

o,
[o3]
O.
@
genHenry

Florence
Charlle

* Function, parameter, and variable names

e Must start with a letter or an underscore
* Underscores usually avoided

* May not contain white space
 After the first letter, can be any number; letter, or underscore

* [dentifiers are case sensitive
« “polyArea” is different from “PolyArea”

* May not be a keyword

* Choose names that are descriptive, and easy to type
« “Be4aTgh9_fr37200aBy” is probably not a good choice

D
>
Q
=
Q—
o
)
OMuhammed

g =
QO
Jacob
Edward
mo
~<

0% 3JessicaAlice

S5 ScarlettElla
ah Lucas
Ethan

Harrison
mol
<. :
D
)
0@

'-<

—

g7

3

)

w

iam
Max Loqan
gan
EalSYAblga
‘Q%g%:',: Ge

-< 3

MasonMe

Binghamton CS-220

University Spring 2016

Keywords

asm auto break case char const continue
default do double else enum extern float for
fortran goto if int long register return short
sighed sizeof static struct switch typedef
union unsigned void volatile while

2
&

)QF

>

Binghamton CS-220

University Spring 2016

Function Parameters

 Comma separated list of data passed in to the function

* Each entry in the list specifies the “type” and “name” of one
parameter

* The value of the parameter can be referenced by its name in the
function embodiment

* Terminology: Parameter from inside the function

* Argument when calling the function

10

Binghamton CS-220

University Spring 2016

Statements In a Function Embodiment

e Variable Declaration Statements

* Expressions statements <expression>;
* Assignment statements: <variable>=<expression>;

* Control Statements: if /then/else, do while, for, return,

Binghamton CS-220

University Spring 2016

Variable Declaration Statements

* <type> <name> |=<initial value>|;
* Required for each variable in your program

* Tells the compiler

* The “type” of the variable, e.g. “int” or “float”
* The name of the variable
* Optionally, the initial value of the variable

* For example: int X=3;

 Basic Types: char; int, float

Binghamton CS-220

University Spring 2016

Variables in Functions

e Variable Declaration within function (usually at top)

* “Automatic” storage class by default

* New variable each time function starts

* Initialized when function starts (if initializer specified)
* No longer available when function ends

13

Binghamton
University

unsigned
char

unsigned
short

unsigned
int

CS-220
Spring 2016

unsigned
long

Binghamton CS-220

University Spring 2016

Example Expression Statements

intx; inty; /* Variable Declarations */

x=13; /* Constant assignment */

y=x; /* Variable assignment */

y=-X; /* Unary Operator */

y=x*3; /* Binary Operator */

y=(x*3)+7; /* Parenthesis */
y=atoi(argv|2]); /* Function invocation */
x=y=7; / Assignment operator */

x*=3; /* Compound Assignment Operator */

Binghamton CS-220
University Spring 2016

*k
+)_)) ;%)

>r<;>=1<=)==) !=; &&) ”; AR

& |1, <<, >>

> *=, /=, %:) |=’ =, A=

Binghamton CS-220

University Spring 2016

C Operators with Side Effects

* y=++%; // Prefix increment x=x+1; // increment first
y=X; // then assign

* y=x++; // Suffix Increment * y=X; // assign
x=x+1; // then increment

Binghamton CS-220

University Spring 2016

Assignment Operators

X <op>=y,

...iIs the same as...

X=X<0p>Yy
* X+=3; X=X+ 3;
* X|=0x02; x =x| 0x02;

* X/=y+3 X=X/ (y+3);

Binghamton CS-220

University Spring 2016

Expression Statements / Equals Operator

» Assignment statements are really expression statements
* “Value” of an assignment is the value of the LHS
* x=y=z=0; // initialize X, y, and z to zero

* [f a statement is just an expression, its value is discarded
printf(“This is a test\n"); // discards 15... number of chars printed
a=3; // discards 3... the value of “a”

(3+21)/6; // discards 4... the value of (3+21)/6

Binghamton CS-220

University Spring 2016

Why not more operators?

 Standard Library Functions
* stdlib.h

 Conversion - atoi, atol, atof, strtol, strtoul, strtod
 math - abs, labs, div, 1div, rand
 math.h
* Trigonometry - sin, cos, tan, asin, acos, atan, sinh, cosh, tanh
* Exponents - sqrt, pow, log, exp, log10, ...
* Rounding - fabs, floor, ciel

Binghamton CS-220

University Spring 2016

Operator Precedence

0)] ->
! - ++ -- + - * & (type) sizeof
* / %

+ _

<< > >

< <= >= >

—= =

& A |

&& |

Binghamton CS-220

University Spring 2016

C function invocation

* Arguments must match parameter types
* as specified in function signature

* For instance;
inty; y=area('r’,3,4) * 2; // two 3x4 rectangles

* Function must be declared before it can be invoked
* One way of declaring a function is to define the function.
* This leads to upside down code.

Binghamton CS-220

University Spring 2016

Example of Upside Down Code

int square(int x) { return x*x; }
int poly(int x) {
return square(x) + 2*x + 4;
}
int main() {
Int Xx=7/;
if (poly(x)<9) return 1;
return O;

23

Binghamton CS-220

University Spring 2016

C function declaration

. {<result type> <function name>(<arglist>)};

* Optional -
* If not specified, function definition is used for the declaration
 Files much easier to read when top level function is at top of file

* C files typically contain:

<function declarations>
<top level function definition>

<bottom level function definition>

Binghamton CS-220

University Spring 2016

Example of RightSide Up Code

int poly(int x,int c1, int c2, int c3);
int square(int x);

int main() {
int x—7 RIGHT SIDE
if (poly(x)<9) return 1: UP‘
return O;

\ .

int poly(int x,int c1, int c2, int c3) {
return square(x) + 2*x + 4;

}

int square(int x) { return x*x; }

25

Binghamton CS-220

University Spring 2016

Top level function: "main”

* Operating system invokes your “main” function

* OS passes two arguments to “main”: int argc, char **argv
* argc - argument count - number of arguments passed to main
e argv - argument vector - list of strings — one for each blank delimited
token on the command line

 For instance after: ./mycmd p1 p2
e argc =3
* argv[0] -> “/home/tbarten1/examples/xmp_args/mycmd”
e argv[1l]->“pl”
* Argv|2]->“p2”

Binghamton CS-220

University

Return from main

Spring 2016

* OS requires main to return an “int”

* Interpreted as the “return code” from your program
* Indicates if your program worked or failed.

* By Convention
* “0” - indicates that your program worked correctly

* Any thing else indicates a problem!

